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Abstract 

In the framework of the Faddeev formalism, the cluster description of nuclei is developed. 
A set of generalized Faddeev equations are thus obtained to apply to many-cluster 
problem. The connectedness and the solvability of the obtained integral equations are 
considered. The usefulness of introducing some approximations is discussed. Numerical 
calculations of our model for practical nuclei are in good agreement with experimental 
measurement. 

1. Introduction 

Faddeev (1961a, 1961b, 1963) introduce an exact and correct theory for 
the scattering amplitude in treating the three-body problem. The obtained 
Faddeev integral equations have no 8 functions and also have a kernel which 
has no continuous spectrum. For the multiparticle scattering problem, the 
Faddeev equations were generalized by many authors (Weinberg, 1964; 
Sugar & Blankenbecter, 1964; Rosenberg, 1965), who construct N-body 
integral equations with square integrable kernels. Their reformulated 
equations eliminate the a-function singularities present in the kernel of 
the Lippmann-Schwinger equation (Lippman & Schwinger, 1950) due to 
disconnected processes, in that sense, the Fredholm theory is applicable. 
A significant advantage is introduced in Rosenberg's (1965) approach for 
the N-body problem since the potentials do not appear explicitly. Consider- 
ing the Weinberg & Rosenberg generalizations, we introduced (Osman, 
1970a) a cluster expansion in the light of the Faddeev equations. 

In this paper, a cluster description of nuclei is developed in the framework 
of the Faddeev formalism, making use of previous considerations (Weinberg, 
1964; Sugar & Blankenbecler, 1964; Rosenberg, 1965; Lippmann & Schwinger, 
1950; Osman, 1970a; Lovelace, 1964a, 1964b). Composing the nuclei into 
smaller clusters, a set of generalized Faddeev equations are thus obtained to 
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apply to the many.cluster problem. Also, we considered the connectedness 
and the solvability of the obtained integra] equations. The hard-cluster model 
(Wildermuth & Kanellopoulos, 1953, 1958/9; Phillips & Tombrello, 1960) 
and the cluster model inner parameters (Perlstein et al., 1960) approximations 
are discussed. Calculating the binding energies according to our model for the 
nuclei 6Li, 8Be, lzc, 14N, 160, and ZONe, using a different cluster decom- 
position for each, good agreement with the experimental measurements is 
obtained. 

The model expansion with the generalized Faddeev equations for many- 
cluster problem are obtained in Sec. 2. The generalized Green's functions are 
defined in Sec. 3, while binding energy and generalized integral equations are 
introduced in Sec. 4. Results and calculations are introduced in Sec. 5. 
Section 6 is given over to discussion. 

2. The Model 

In a matrix form, Faddeev (1961a, 1961b, 1963)has represented the three- 
particle system successfully by his equations 

\ o)(zy \Vlz(Z) 2' 
where 

T23(Z) = V23-  V23Go(Z)T23(Z) (2.2) 

Go(Z) = (Ho - Z) -1 (2.3) 

and the total t matrix T(Z) is given by 

T(Z) = T(I)(Z) + T (2) + T(3)(Z) (2.4) 

with 

TO)(Z) = V23 - V23Go(Z)T(Z) ' "  (2.5) 

and where Vii is the two-body interaction between the particles i andC 
Let us suppose that the total system (nucleus) is to be divided into S sub- 

systems. These subsystems are clusters denoted by Sn with n = 1, 2 , . . . .  
S refers to the cluster number. Thus, a lzC nucleus can be divided by a 
method such as azC -+ a + ~ + a, so that $1 = $2 = $3 = a and the total system 
is divided into S = 3 subsystems. 

if  we start with the Faddeev equations (2.1), the N-body Lippmann- 
Schwinger equation for the Sn clusters can be written as 

T(D(S)) = ~ T(i; D(S)) (2.6) 
i<D(S) 
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In Eq. (2.6) we have introduced the notation D(S) to refer to the division 
process of the total system into Sn clusters with the corresponding number S 
classifying such a division, and with i being a pair of particles. In Eq. (6), for a 
division process D(S), the amplitude is defined so that particles in a cluster Sn 
interact only with each other and not with particles in other clusters. This 
condition is clear and justified through the conditional notation i < D(S). 

Now, let the cluster Sn be subdivided by D(C), so that no subsystem D(C) 
is further divided by the division D(S). 

Thus in order that D(C) cannot be divided further into subsystems, this 
condition is expressed by the notation D(C) ~ D(S). To see this consider the 
above example of the 12C nucleus, so that ifD(S) stands for 12C ~ ~ + oz + a, 
then more possible subdivision processes D(C) are 

12C -~ ot + (d + d) + (d + d) 

Therefore, we obtain the satisfied integral equation 

T(i; D(S)) = T(i; D(C)) + T(i; D(C))Go ~, TO'; D(S)) (2.7) 
D(C)<j<D(S) 

where Go is the Green's function in free space and where we can find the pair 
j only in any subsystem of D(S), and the notation D(C) < j  means that we can- 
not find the pairj in any subsystem of D(C). 

Let us introduce the vector C(Sn) with S components to classify the 
division D(C) which follows D(S). In this notation the kth component of 
C(Sn) refers to the number of clusters into which the kth subsystem of D(S) 
is divided by D(C). Thus taking the example of the 12C nucleus, so that if 
D(S) stands for 12C ~ e~ + a + a, with a possible subdivision 

12C -+IR + (d + d) + (n + n + p  + p )  

this subdivision is expressed as C(Sn) = (1, 2, 4). 
It can be proved by mathematical induction that in a general form we can 

get 

T(i; D(C)) = Y (c) ~ vo(C) M(i; D(3')) 

+ ~ M(i; D(')'))Go ~ TO'; D(C)) (2.8) 
Y(C) = "to(C) m('r) <j < D(C) 

where the vector Yo(C) is a fixed C(Sn)-component vector, and the vector 
C(Sn) is introduced to classify the dMsion D(C) which follows D(S). The 
notation Y(C) i> Yo(C) means that each component of Y(C) is not smaller 
than the corresponding component of Yo(C). By the equality Y(C) = Yo(C) 
we mean that every component of one is equal to that of the other. The 
quantity M(i; D(7)) which appears in Eq. (2.8) is defined by Eq. (2.8) itself, 
since only when Eq. (2.8) holds are the M(i; D(7))'s meaningful. 

To prove Eq. (2.8), by mathematical induction, let us introduce Eq. (2.8) 
into Eq. (2.7) and sum over all D(C) < D(S) for fixed C(S) and Yo(S). The 
second condition gives some freedom for Y0(S), since, for example, if we take 



84 OSMAN 

C(S) = (1, 2, 2) and Yo(S) = (1, 3, 2), then two cases are possible, namely, 
(1, t, 2, 1, 1) and (l ,  2, l, l, 1). Then, we get with constant times 

A(C(S); i(S)) T(i; D(S)) = ~ [A(C(S);Y(S))M(i;D(7)) 
x(s) >1 to(S) 

+ B(C(S); Y(S))M(i; D(7)) Go 

x 2 T(j; D(S))] 
D('y) < ] < D(S) 

where 

(2.9) 

Sn 

A(C(S); Y (S)) = ] 7  a(Ck(S); 7k(S)) (2.10) 
ck(s) 

which denotes the number of possible D(7)'s for a fixed C(S) and Y(S). Also, 
the recurrence relation defining a(x; y) which appeared in eq. (2.10) is 

a(1 ;y) = 1 

a(x;y) =x y - -1 

In Eq. (9), we have also 

B(C(S);V (S)) = A(C(S); V(S)) 
Sn 

-- ~ A(C(S);Y(S) - k )  (2.12) 
k=l 

where k is the unit vector on the kth axis. 
Thus, since we get Eq. (2.12), we see that Eq. (2.9) reduces to Eq. (2.8) 

with D(C) replaced by D(S). Now, since Eq. (2.8) exists, so the quantity 
M(i, D(7)) is defined by Eq. (2.8) itself. For the connectedness of the model, 
Eq. (2.8) will be a fully connected equation only when 

v(&) = c ( & )  + t 

Also, approximating M(D(S))by its poles (Osman 1970b) presents a solv- 
able model for interacting several-particle systems by cluster deformation. 
Also Eq. (2.8) gives the possibility of decomposing clusters into smaller 
clusters, and so on. They are approximated by their lowest poles, which 
originate from the most highly connectected part of T(D(S)) and M(D(S)) 

3. Generalized Green's Functions 

The T operator defined in Sect. 2 gives all the different physically relevant 
information wanted. As is shown from Eq. (2.8), the unperturbed Green's 
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function G O is given by Eq. (2.3), where H 0 is the sum of kinetic energy oper- 
ators, so that if we suppose that the total system is composed of N particles, 
then 

x-~N p~ 
Ho : ~ (3.1) 

z_..,i=l 2mi 

Then we can construct the full Green's function as 

G(Z) = Go(Z ) + G o(Z)T(Z)G o(Z ) 

where 

a(z) = (H - Z ) - '  

and where H is the Hamiltonian of the system. 
From equations (2.3) and (3.3) we can expand 

G(Z) = [1 + K(Z) + K2(Z) + - " ] G o ( Z )  

where 

K(Z) = Go(Z)V 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

Any particle with binding energy e shows up in G(Z) as a pole at 
Z = - e  in the center-of-mass system and also generates cuts in Z with branch 
points at the thresholds for states containing the particle. 

All the elements Tc~ of Eq. (3.2) of the center-of-mass T matrix may be 
obtained using 

T~¢(ku, k~; E) = l i r a  [(~o~, (H - E)d~) + ((H - E)q~u, G(Z)(H - E)~¢)] 
Z - + E + i e  

(3.6) 

where ~a  is the plane wave describing the free relative motion of the bound 
subsystems in the channel a: 

cP~(O~, r~) = X~(o,~)e ikc~'r~ (3.7) 

and X~(O~) is the bound-state wave functions. 
Thus with the expression (3.5) for the scattering kernel, we can construct 

the full Green's function as 

G(Z) = Go(Z ) + K(Z)G(Z) (3.8) 

The linear integral equation (3.8) is straightforward if the kernel K(Z) is 
completely continuous. The kernel K(Z) wilt be completely continuous if it is 
on the Hilbert-Schmidt kernel, that is if 

r(Z) = Tr[K(Z)Kt(Z)] = Tr [(1/IZ - H o 12)V 2 ] < o~ (3.9) 
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One way to solve Eq. (3.8) is the modified Fredholm method. This method 
is based on the fact that if the kernel K(Z) is completely continuous, then 
G(Z) is a meromorphic function of the coupling constant, so that we can 
write 

G(Z) = D- 1 (Z)N(Z) (3.10) 

where the operators N and D are entire functions of the coupling constant. 
It is shown that N and D with TrK 2, TrK 3 . . . . .  etc. but not TrK converge if 
v(Z) is finite. This method had been given before in detail (Smithies, 1958). 
Then the binding energy can be computed by searching for the zeros of the 
Fredholm determinants. 

Let us define the Green's function Gs(Z ) for any subsystem as 

a s ( z )  = (iris - z ) - '  (3.11) 

Then we can introduce the connected part of the Green's function as 

C(Z) = I(Z) G(Z) (3.12) 

where t(Z) is the sum of all irreducible ones. 
This can be shown for the three-particle system if we define the partially 

connected Green's functions Pij(Z) as 

with (for/j = 12, 13, 23) 

c d z )  = P , ( z )  + a d z )  

Gij = (/40 + v~j - z ) - i  

Thus the completely connected Green's function is 

G(Z) = C(Z) + Pt2(Z) + P13(Z) + P23(Z) + Go(Z ) 

with 

Pii(Z) = Kij(Z )GiI(Z) 

and then the irreducible kernelT(Z) is defined by 

[(Z) =PIz(Z)(V23 + V13 ) + P23(Z){V12 + V13} + PI3(Z){VI2 + V23} 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

So, that we can obtain 

C(Z) = B(Z) + I(Z)C(Z) (3.17) 

The expression (3.17) can be generalized for any subsystem S in an 
N-particle system as 

Cs(Z ~ = Bs(Z ) + Is(Z)Cs(Z ) (3.18) 



FADDEEV EQUATIONS AND THE MANY-CLUSTER PROBLEM 87 

If the number of particles in S is 4, for example, then for the connected part we 
have 

Ciikl = (Hiikl - Z) -1 _ (Hi] k +HI - Z) -I _ (Hi] I + Hk - Z) -I 

--(Hikl +H i - Z) -I - (Him +Hi - Z) -I - (Hi i + Hm Z) -I 

- (Hik +H# - Z) -I - if/i, +H]k - Z) -I 

+ 2(Hi/+ H k + Ill - Z)- i + 2(Hik + H i + HI - Z)- I 

+ 2(Hil +HI +H k - Z) -I + 2(H]k +Hi +lit - Z) -I 

+ 2(H# + H i + H~: - Z ) -  1 + 2(Hkl + Hi + H i - Z ) -  ~ 

- 6 ( H  i + H  i + H k + H l -  Z )  -1 (3.19) 

For the irreducible kernel we have 

I i m  : [c i j k .C , l (V ,  + vj, + vkl)  + [%l.ck] (v ik  + v/~ + v,k) 

+ [Gk,*Q] (Vi/+ vkj + Vii) + [Qkl*G] (Vii + Vki + V,i) 

+ [C0*Ckz] (Vik + Vi, + Gk + v/z) + [c ,k .cJ(<. j  + v .  + vkj + vkt) 

+ [Ci/*Cik] (Vii + Vik + Vq + Vlk ) (3.20) 

with expressions for Cijk, Iqk  and C 6, Ii] more simple than expressions (3.19) 
and (3.20) describing the three- and two-particle systems. 

Thus the bound state of the subsystem S occurs when the connected 
Green's function for that S has a pole. Such poles arise when one of the 
eigenvalues of the corresponding irreducible kernel passes unity. 

4. Binding Energy and Generalized Integral Equations 

To write now the explicit forms of the generalized integral equations 
defining the quantities which appeared in Sect. 3, we start by the two-body 
problem. 

For nonrelativistic two-particle scattering, the kernel is 

(plpzjK(Z)jp,lp~) _ 8 ( P -  P') 
Z -  q 2 / 2 ~ -  P2/2M <ql Vi2[q') 

where 

and 

P=Pl +P2 

q = (m2p 1 - m l p 2 ) / ( m  1 +rn2) 

M = m l  + m  2 

I.i = m l m 2 / ( m  1 + m2) 

(4.1) 
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To avoid the 6 function that appeared in Eq. (4.1), preventing it from 
being an L 2 kernel, i.e., r(Z) < ~,  we have to define 

<Pl P2[ G(Z) IP'i P2> - 6(P - P') <q[ G(Z) - P 2 / 2 . . M I  q'> 

Introducing Eq. (4.2) into Eq. (3.8), we get 
<ql V121 q")(q" IG(Z) lq') 

(q[G(Z)I q') = 6(q - q')/(Z - q2/2U) + f d3q '' 
Z - qZ/2 u 

(4.2) 

(q121 V121 q'12} 
x [Z - p3/2p32 _ q22/2#12 ] (4.10) 

The integral equation (4.3) is an L 2 kernel only if we have 

f,¢3,,d3,, t(_~_ql_ V,2 t q') l_ 2 
" " [ Z -  q2/2p12 < ~ (4.4) 

For local potentials V12(r), tile condition (4.4) is 

fdarV2z(r) < oo (4.5) 

which is true for short-range potentials. Then if V12(r ) is a local potential, for 
every partial wave the kernel will be an L 2 kernel if 

r2g~2(r)dr < , ~  and ; g~2(r)dr < ~  (4.6) 
o 

Now, let us turn to the more complicated problems of an N-particle 
system, considering firstly the easiest one of the three distinguishable par. 
tides with two-body interactions Vq. 

In that case the matrix elements of the kernel will be written as 

. . . .  8(Eipi - Eip}) , , 
(plP2PatK(Z)IPlP2P3) Z -  Eip~/2m i [6(P3-P3)(q12tV12[q12) 

+ 6(pl - P'1)(q231V23[q23) 

- P2)(ql3l Vlalq'13)] (4.7) + 5(p 2 ' ' 

Then from Eqs. (3.13-3.16), we have the integral equations. 

P6(Z) = Kq(Z)Go(Z ) + Kq(Z)Pq(Z) (4.8) 

and for the inhomogeneous term B(Z) that appeared in Eq. (3.17) 

B(Z) = I(Z)[P12(Z) + Pa3(Z) + P23(Z) + Go (Z)] (4.9) 

Now for P12 in Eq. (4.8), the kernel of  the integral equation is 
t ¢ ¢ t t t 

(plp2P3lK12lPlpzp3} = 6(p'~ + P2 + P3)8(P3 - P3) 

(4.3) 
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where we have used 

and 

Pl +P2 +P3 = 0  

q12 -- (m2ql  -- m a q2)/(m I + m2) 

IRa2 -~mlrn2/(ml + m2) 

~z 3 = m 3 ( m l  +m2)/(ml +m2 +m3) 

Then Eq. (4.8) has the solution 

, t F t ¢ 

(PlP2PaIP12(Z)lPlP2P3) = ~(P'I + P2 + P3)/5(P3 - P3) 

x (q121P12(Zp~/2t13)iq'12) (4.11) 

with an integral equation for the reduced matrix element given as 

(qt V ~21q)' = , + i d 3 q  ,,(qtVlzlq')(q' 'lP12(Z)jq') 
(qJPt2(Z){q')  ( Z -  q Z / ~ q  2/21a12 ) .j Z -  q2/2/ai2 

(4.12) 

From Eq. (4.12) it is clear that (qtP12(Z) lq') is the two-body Tmat r ix  
which can be solved by the Fredholm method if the potential V12 is chosen to 
satisfy the condition 

l(ql V121q')l 2 daqd3q, 
,[ ld  7 q~-7~212 < ~  (4.13) 

Under the condition (4.13), P12(Z) as given by the integral equation (4.12) 
can be solved, and similarly for the quantities P23(Z) and P13(Z). 

Let us now consider the integral for C(Z) expressed by Eq. (3.17), where 
the first term is given by 

t ¢ f r 2 t 
(plp2patPi2(Z) V231plp2p3) = 8 (p;  + P2 + Pa)(qI21P12(Z - P3/2/13)lq12) 

b' ¢ 

X (q231 V23tqz3) (4.14) 

with 

and 

t , , m l  
q'12 - m2pl  - mlP2  = Pl -t - -  P3 

ml  + m 2  ml  +m2  

t 
,, m3P2 -- m2p 3 m3 , 

q23 - = -- P3 Pl 
m 2 + m 3 D ' / 2  + m 3 

t t 1 
P 2 = P l + P 2 + P l  = - - P 3 - - P l  
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Using Eq. (4.14), all the terms of Eq. (3.17) can be obtained by simple 
permutations, and also the in_homogeneous term B(Z) can be obtained from 
Eq. (4.9). Finally, since I(Z)is an L z kernel, we can solve equation (3.17) 
for C(Z). Then I(Z) can be written as 

{PlP2P3[I(Z)IPlP2Pa)=O(Pl +P2 Pa) x(PlP2P31Ic.m.(Z)IPlP2P3 ) 

(4.15) 

where/c.m, does not contain any 8 function. Then I(Z) will be an L 2 kernel 
if the center-of-mass Hilbert-Schmidt norm II I(Z)tt 2 < % expressed as 

l lI (z) ,  2 a'PId3p2d3P3 (P' + p2 + p3) 

i 3 ~ 3 t 3 ~ t F x d pl d p2d p3~(Pl + P2 + P3) 
, F t ~ ] 1 /2  

x ](plP2Pat!c.m.(Z)lplp2p3)l 2 (4.16) 
J 

Then according to the condition (4.13) II I(Z)II 2 is finite subject to this 
condition (4.13) for all Vii. 

In Eq. (4.16) we have 

iigij(Z)Kik(Z)ll 2 < oo (ijk = 123,231,312) (4.17) 

Any bound state with energy - e < 0 must correspond to a pole of T(Z) 
at Z = - e. In case the V are weak, the integral equation for T(Z) could be 
solved by perturbation theory to give the Born series, in which no term has 
any poles. Thus the bound state only exists if V is strong enough so that the 
series converge at least for Z in the neighborhood of - e. 

For local potentials Vii, (4.16) and (4.17) will be satisfied if 

fd3r[ Vii(r)l 2 < o~ (//' = 12, 23, 13) (4.18) 

Considering that particles 12 and 23 form bound states with binding 
energies e12 and e23, the pole approximation is suggested by Faddeev (1961a, 
1961 b, t 963) and Lovelace (1964a, 1964b) and has been applied by Rosenberg 
(1965) introduced as 

, ) ~ 1 2 ( q 1 2 ) ~ 1 2 ( q ' 1 2 )  
(q12 [P12(Z)[ ql 2 "~ 

Z + e12 

@ r 
t 

(q23 IP23(Z) 1q23 ) " ~23(q23) ~/23(q23) (4.19) 
Z + e23 

(q131P13(Z) I q'13) --~ 0 

Then the irreducible center-of-mass kernel for three-particle systems according 
to this approximation, making use of Eqs. (3.16), (4.1 I), and (4.14), can be 
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Figure 1. The sum C(Z) of all connected graphs. 
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written as 
* r t + 

(Pt P2Pa]/c.m.(Z)lPlP2P3) = ~ 12(qt2)~ 12(q12)[g31 (Pa - P3) Vae(P3 - P3)] 
Z + e12 - p~/2g 3 

~23(q23)423(q23)[V12(P1 - P ; )  + V13(Pl - pl)] 
+ (4.20) 

Z + e23 - p~/2/~1 

Thus, solving the kernel (4.20), which is an L 2 kernel, by the Fredholm 
method we can calculate the bound-state binding of  the three-body problems 
by solving the eigenvalue equation 

I(-e123)~I ' = q~ (4.21) 

Introducing Eq. (4.20) into the integral equation (3.17), and assuming 
that the overlap integrals for 412 and 423 can be treated in first order, the 
well-known distorted wave approximation is obtained. 

Now, for more complicated N-particle systems, as for example N = 4, the 
integral equations for the four-body systems are expressed in Figs. 1, 2, and 
3, corresponding to Eqs. (3.13) and (3.15), Eqs. (3.17) and (3.18), and Eqs. 
(3.17) and (3.18), respectively. 

Solving these equations successively, the explicit expressions for C s and I s 
are given by Eqs. (3.19) and (3.20) f o r N  = 4. 

Thus it is possible to solve the N-cluster problem in a lengthy but straight- 
forward way whatever the number  of  cluster decompositions N. First, we 
solve the connected Green's function using the ordinary Lippmann-Schwinger 
integral equation (Figs. 2 and 3, the first parts). Then we solve the irreducible 

Figure 2. The linear integral equations for the connected Green's functions for N = 2, 3, and 
4 clusters. 
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Figure 3. The irreducible kernels I(Z) appearing in the integral equations of C(Z) for 2, 3, and 
4 clusters. 

kernel for the three-cluster problem (Fig. 3, the second part) and the inhomo- 
geneous term (Fig. 2, the second part) using the Fredholm method 

In the cluster equation, the partially connected equation is in general 
not solvable. With the approximations introduced and continuing the connecting 
process, the fully connected equations are obtained. In principle, one can con- 
struct more highly connected kernels by solving the fully connected equations 
step by step. 

For any system, the bound state occurs when the connected Green's func- 
tion for that system has a pole. These poles arise when one of the eigenvalues 
of the corresponding irreducible kernel passes unity [Fig. 2 and Eqs. (3.17) 
and (3.18)]. 

If we are interested in the channel a, for the case of subystems S 1, S 2 . . . . .  Sm 
bound together with total eigenvalue -e~ ,  then the total energy is E = S~ + 
(hk~)2/2mc~. This decomposition process may continue till a class of terms 
contain as their left-hand factor the operator M(S~ ; $2; • • .; Sin) which leads 
to the channel of interest. This class of terms contributes to the residue of a 

2 pole at - e a  of M(D(S)) with energy E '  = - %  + (hk~) /2mo~. Therefore the 
existence of the pole is deduced by comparingE and E',  where from the 

! 

momentum conservation the matrix element of M(D(S)) vanishes unless ks = 
k£. Thus the residue is taken at the pole at Sa = - e a  in the momentum-space 
matrix element of M(D(S)). Usually, the residue at a bound-state pole factorizes. 
In the neighborhood of a bound state, the residue of the off-shell two-body 
amplitude factorizes in the initial and final moments. The resulting functions 
of the momenta are the form factors. These form factors, in the bound-state 
case, are simply related to the bound-state wave function. At these bound- 
state poles, the residues factorize in the off-shell momentum variables. In the 
case of a degenerate bound state, the residue will be a sum of separable terms. 

It is worthwhile that we must mention here that our M(D(S))'s are 
identical to the T(C)'s of the Rosenberg equation. 
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5. Results and Calculations 

Our model developed in Sec. 2 is applied for practical numerical calcula- 
tions. The binding energies for the nuclei 6Li, 8Be, 12C, 14N, 160 and 2°Ne 
are calculated. Different cluster deformation for these nuclei is suggested. 
Thus the total t matrix of a nucleus is expressed as an expansion of sum of 
t matrices according to the cluster model required for any nucleus. Once the 
total t matrix is well defined, the binding energy can be extracted as a method 
presented for the three-nucleon system (Osman, 1970b), and more compli- 
cated systems (Osman, 1970c, 1971), and is generalized for the present 
model. Equation (2.8) gives the possibility of decomposing clusters into smaller 
clusters, and so on. All of them are approximated by their lowest poles, which 
originate from the most highly connected part of T(D(S)) andM(D(S)). 

Then, for numerical calculations of the Faddeev equations we have followed 
a method for direct solution of these equations. If we consider that L is the 
maximum orbital angular momentum in the two-body partial wave expansion, 
Ahmadzadeh and Tjon (1965) and Osborn and Noyes (1966)have shown that 
the Faddeev equations are reduced to a coupled set of 3(L + 1) integral 
equations in two continuous variables for the J = 0 problem. The number of 
these integral equations is reduced to (L + 1) in the case of three identical par- 
ticles. Osborn (1967) has introduced the approximation of only considering 
the L = 0 part of the potential, so that the three-body problem is described 
by one integral equation in two variables. For separable potentials, the 
integral equation may be reduced to an integral equation in one variable, 
which by conformal mapping and Gaussian quadrature is converted into a sum. 
For nonseparable potentials, special quadrature rules by which a small number 
of mesh points give accurate results have been developed. In our present work 
the integrals are solved using the Kopal (1955) method. These integrals are 
replaced by 20-45 point mesh. The number of mesh points considered is taken 
according to every cluster decomposition in every case. In the integration, the 
kernel is approximated by a finite N x N matrix by choosing finite mesh sizes. 
The number of steps N in the integration is taken to be 45. Increasing this 
number to N = 75 did not change the result. 

Coulomb effects between the different clusters composing these nuclei 
have been included by a manner described in detail in Osman (i971). The 
results of the calculations of these nuclei are represented on Tables 1-6, 
respectively. For the purpose of  comparison, the deviation of the present 
model calculations from the experimental measurements of the atomic masses 
(Mattauch et al., t965; Endt & Van der Leun, 1967) is introduced, which as 
shown does not exceed about 2.767%. Also the deviation of the binding energy 
per nucleon between calculations of our present model and experimental bind- 
ing energy per nucleon is found that it does not exceed about 0.11045 MeV. 

These obtained generalized Faddeev equations in their limit case give the 
three-nucleon problem which is studied explicitly in Osman (1970c), using 
the separable expansion for the t matrix. 
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TABLE 1, The binding energy (B.E.) of  the 6Li nucleus in MeV 

B.E. due to Difference Deviation 
Model our model B.E. (Expt.) MeV percent 

a + d 1.472 1.4723 0.0003 0.021 
c~ + n + p 3.691 3.697 0,006 0.162 
d + d + d 25.419 25.319 0.100 0.394 
2d + n + p 27.443 27.544 0.101 0.367 
d + 2n + 2p 29.657 29.768 0.11 t 0.374 
3n + 3p 32,012 31.993 0,019 0.059 

TABLE 2. The binding energy (B.E.) of  the 8Be nucleus in MeV 

B.E. due to Difference, Deviation, 
Model our model B.E. (expt.) MeV percent 

c~ + a  0.126 
+ d + d 23,398 23.752 0.354 1.502 

a + d + n + p 25.658 25.977 0.319 1.236 
+ 2n +2,o 28.324 28.201 0.123 0.435 

d + d + d + d 47.333 47.599 0.266 0,560 
3d + n + p 49.484 49.824 0.340 0.685 
d + d + 2n + 2p 52.243 52.048 0.195 0.374 
d + 3n + 3p 54.618 54.273 0.345 0.634 
4n + 4p 56,221 56.498 0.277 0.492 

TABLE 3. The binding energy (B.E.) of  the 12C nucleus in MeV 

B.E. due to Difference, Deviation, 
Model our model B.E. (expt.) MeV percent 

c¢ + c~ + c~ 7.475 7.274 0.201 2.726 
o~ + ~  + d + d  30.957 31.121 0.164 0.528 
c~ + 4d 55.137 54.968 0.169 0.307 
2c~ + d + n + p 33.t75 33.346 0.171 0.514 
a + 3d+  n + p  56.993 57.193 0.200 0.350 
c~ + c~ +2n + 2p 35.489 35.570 0.081 0.228 

+ 2d + 2n + 2p 59,169 59.417 0.248 0.418 
+ d + 3n + 3p 61.856 61.642 0.214 0.347 

c~ + 4n + 4p 63.341 63.866 0.525 0.825 
6d 78.418 78.815 0.397 0.505 
5d + n + p 81.102 81.040 0.062 0.077 
4d + 2n + 2p 83.014 83.285 0.271 0.326 
3d + 3n + 3p 85.306 85.489 0,183 0.214 
2d + 4n + 4p 87.482 87.714 0.232 0.265 
d + 5n + 5p 89.888 89.938 0.050 0.056 
6n + 6p 92.004 92.163 0,159 0.173 
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T A B L E  4 ,  T h e  b i n d i n g  e n e r g y  (B.E.)  o f  t h e  14N n u c t e u s  in  MeV 
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B.E. d u e  to  Dif ference ,  Deviat ion,  
Model  ou r  m o d e l  B.E. (expt . )  MeV percen t  

c~ + c~ + a + d 17 .831 17 .546  0 .285  1.611 
a + o ~ + a + n + p  19 .463  19,771 0 .308  1 .570  
oz + c~ + 3d 4 1 . 1 9 3  4 1 . 3 9 4  0 .201 0 .487  
2c~ + 2d + n + p 4 3 . 4 0 5  4 3 . 6 1 8  0 . 2 t 3  0 . 4 9 0  
a + 5d  65 .723  65 .241 0 .482  0 . 7 3 6  
c, + 4 d  + n + p 6 7 . 8 5 2  67 .465  0 .387  0 . 5 7 2  
2c~ + d + 2n + 2p 45 .231  4 5 . 8 4 3  0 .612  1. 344 
c~ + 3d + 2n + 2p 69 .041  6 9 . 6 9 0  0 . 6 4 9  0 . 9 3 6  
c~ + a +3n  + 3p 4 8 . 9 4 3  4 8 . 0 6 7  0 . 8 7 6  1 .806 
a + 2d  + 3n + 3p 72 .237  7 1 . 9 1 4  0 . 3 2 3  0 .448  
c ~ + d + 4 n + 4 p  7 3 . 9 9 3  7 4 . 1 3 9  0 . 1 4 6  0 .197  
a + 5n + 5p 7 6 . 8 5 3  76 .363  0 . 4 9 0  0 . 6 4 0  
7d  89 .435  8 9 . 0 8 8  0 .347  0 .389  
6d  + n + p  9 1 . 0 6 8  9 1 . 3 t 2  0 . 2 4 4  0 . 2 6 8  
5d  + 2n + 2p 9 3 . 7 9 4  93 ,537  0 .257  0 .274  
4 d  + 3n + 3p 9 5 . 2 7 4  95 .761  0 .487  0 . 5 1 0  
3d  + 4n + 4 p  97 .621  9 7 . 9 8 6  0 .365  0 . 3 7 3  
2d + 5n + 5p  99 .897  100 .210  0 .313  0 . 3 1 3  
d + 6n + 6p t 0 2 . 5 4 8  102 .435  0 . 1 1 3  0 . 1 1 0  
7n + 7p 104 .593  104 .659  0 . 0 6 6  0 .063  

T A B L E  5.  T h e  b i n d i n g  e n e r g y  (B.E. )  o f  t h e  160 n u c l e u s  in  MeV 

B.E. d u e  to  Dif ference ,  Deviat ion,  
Model  our  mode l  B.E. (expt . )  MeV percen t  

c~ + c~ + c~ + ~ 14 .042  14 .436  0 . 3 9 4  2 .767  
3c~ + 2d 37 .823  38 .283  0 . 5 4 0  1 .419 
3c~ + d + n + p 40 .801  4 0 . 5 0 7  0 . 2 9 4  0 . 7 2 3  
3c~ + 2n + 2p 42 .321  4 2 . 7 3 2  0 .4 I  1 0 . 9 6 7  
2c~ + 4 d  6 1 . 7 8 6  6 2 . 1 3 0  0 . 3 4 4  0 .555  
2c~ + 3d + n + p 64 .575  6 4 . 3 5 4  0 .221  0 . 3 4 3  
2~ + 2d + 2n + 2p 66 .954  6 6 . 5 7 9  0 .375  0 . 5 6 2  
2~ + d + 3n + 3p 6 8 . 1 7 3  6 8 . 8 0 3  0 . 6 3 0  0 . 9 2 0  
2c~ + 4n  + 4 p  7 0 . 7 3 2  7 1 . 0 2 8  0 . 2 9 6  0 . 4 1 8  

+ 6d  8 5 . 1 5 4  85 .977  0 . 8 2 3  0 . 9 6 2  
+ 5d  + n + p 8 8 . 0 6 3  88 .201  0 . 1 3 8  0 . 1 5 7  
+ 4d  + 2n + 2p 9 0 . 1 6 7  9 0 . 4 2 6  0 .259  0 .287  
+ 3d + 3n + 3p 9 2 . 8 8 9  9 2 , 6 5 0  0 .239  0 . 2 5 8  

c~ + 2 d  + 4n  + 4 p  9 4 . 8 8 2  9 4 . 8 7 5  0 . 0 0 7  0 . 0 0 7  
oz + d + 5n + 5p 9 6 . 8 6 0  9 7 . 0 9 3  0 . 2 3 3  0 . 2 4 0  
a + 6n + 6p 9 9 . i 4 2  9 9 . 3 2 4  0 . i 8 2  0 . 1 8 3  
8d  108 .128  109 .824  0 . 6 9 6  0 .639  
7d  + n + p 111 .243  112 .048  0 .805  0 .721 
6d  + 2n + 2p 113 .899  114 .273  0 . 3 7 4  0 . 3 2 8  
5d + 3n + 3p 116 .217  116 .497  0 . 2 8 0  0 .241  
4 d  + 4n + 4p  118 .341  1 1 8 . 7 2 2  0 .381  0 .321  
3d + 5n + 5p  120 .567  120 .946  0 . 3 7 9  0 . 3 1 4  
2d  + 6n + 6p 122 .894  123 .171  0 .277  0 .225  
d + 7n  + 7p 125 .163  I 2 5 . 3 9 5  0 . 2 3 2  0 . I 8 5  
8n + 8p 1 2 7 . 3 5 2  1 2 7 . 6 2 0  0 . 2 6 8  0 . 2 1 0  
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TABLE 6. The binding energy (B.E.) of the 2°Ne nucleus in MeV 

B.E. due to Difference, Deviation, 
Model our model B.E. (expt.) MeV percent 

5c~ 18.995 19.166 0.171 0.897 
4a + 2d 42.726 43.012 0.286 0.667 
4c~ + d + n + p 44.884 45.237 0.353 0.783 
4c~ + 2n + 2/) 47.769 47.461 0.308 0.647 
3c~ + 4d 66.126 66.859 0.733 1.102 
3o~+3d+n+p 68.279 69.084 0.805 1.172 
3c~+ 2d + 2n + 2p 71.487 71.278 0.209 0.293 
3eL+d+ 3n + 3p 73.146 73.533 0.387 0.528 
3~ + 4n + 4p 75.254 75.'757 0.503 0.666 
2c~ + 6d 89.876 90.706 0.830 0.919 
2a + 5d + n + p 92.135 92.931 0.796 0.860 
2c~ + 4d + 2n + 2p 94.489 95.156 0.667 0.703 
2~ + 3d + 3n + 3p 96.852 97.380 0.528 0.544 
2c~ + 2d + 4n + 4p 98.791 99.605 0.814 0.821 
2o~+d+Sn+5p 101.031 101.829 0.798 0.787 
2c~ + 6n + 6p 103.759 104.054 0.295 0.284 
c~ + 8d 113.138 114.554 1.416 1.244 
o~+Td+n+p 115.974 116.778 0.804 0.691 

+ 6d + 2n + 2p t 17.907 t 19.003 1.096 0.966 
a + 5d + 3n + 3p 120.286 121.227 0.941 0.779 
oz+4d+4n+4p 122.701 123.452 0.751 0.610 

+ 3d + 5n + 5p t24.978 125.676 0.698 0.557 
+ 2d + 6n + 6p 127.058 127.901 0.843 0.661 
+d  + 7n + 7p 129.249 130.t25 0.876 0.676 
+ 8n + 8p 132.405 132.350 0.055 0.042 

lOd 136.192 138.401 2.209 1.609 
9d + n + p 139.439 140.625 1.186 0.847 
8d + 2n + 2p 141.295 142.850 1.555 1.095 
7d + 3n + 3p 143.761 145.074 1.313 0.909 
6d + 4n + 4p 146.082 147.299 1.217 0.837 
5d + 5n + 5p 148.345 149.523 1.178 0.791 
4d + 6n + 6p 150.618 151.748 1.130 0.747 
3d + 7n + 7p 152.903 153.972 t .069 0.697 
2d + 8n + 8p 155.432 156.197 0.765 0.491 
d + 9n + 9p 157.721 158.421 0.700 0.443 
1On + lop  159.875 160.646 0.771 0.481 

6. Discussion 

F r o m  Sec. 2, it is clear tha t  according to our  p resen t  deve loped  model ,  the  
hard-c lus ter  mode l  (Wildermuth  & KaneUopoulos ,  1958/9;  Phillips & Tombrel la ,  
1960) and the  cluster  mode l  inner  parameters  (Pearls tein et  al., 1960) can be 
recons idered  using Eq. (2.8).  For  the hard-cluster  model ,  the  clusters are 
a p p r o x i m a t e d  by their  poles originating f rom T(D(S)) and M(D(S)). Thus,  
approx ima t ing  the  M(D(S))'s by their  poles toge ther  wi th  renormal iza t ion  is 
equivalent  to  p ro jec t ion  u p o n  the cluster  states.  
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From Eq. (2.8) we have the possibility of  decomposing clusters into smaller 
clusters. The Coulomb effects between the different clusters are found (Osman, 
1971) to give accurate measured physical quantities in good agreement with the 
observed data. 

From Tables 1-6, it is clear that the mode we have developed extracts well 
exactly the binding energy for nuclei which are not far from previous measured 
values. A glance at these tables shows that nucleons inside nuclei like to cluster 
in the form of a clusters. 
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